6. Le caryotype et les anomalies chromosomiques constitutionnelles

Caryotype = ensemble des chromosomes (qui eux même contiennent tout le génome d'un individu).

Il est réalisé sur les cellules somatiques (cellules qui ne seront jamais à l'origine de gamètes) pendant la métaphase de la mitose.

Note : il existe des techniques haute résolution en prométaphase et prophase.

Il est caractéristique d'une espèce donnée (pas d'un individu).

Chez l'homme : 46 chromosomes. Dont 22 paires d'autosomes (1 à 22) et 1 paire d'hétérosomes (les chromosomes sexuels X et Y).

Le caryotype normal s'écrit : 46 XX ou 46 XY

Cellule diploïde : cellules où les chromosomes sont présents en 2 exemplaires (par paire)

Techniques d'études :

Pendant la mitose : la métaphase.

Sur les cellules somatiques : lymphocytes, cellules fœtales ou cellules à index mitotique élevé (comme les cellules de la moelle).

On va utiliser la colchicine qui va bloquer toutes les mitoses en métaphase (poison du fuseau mitotique), puis on fait un choc hypotonique.

Identification:

Coloration standard: au GIEMSA.

Bras court = p

Bras long = q

Place du centromère :

- le = longueur de p / longueur de (p+q)
- le = 0,5 (chromosome métacentrique)
- le < 0,5 (chromosome submétacentrique)
- le = 0 (chromosome acrocentrique)

Les chromosomes acrocentriques : 13,14,15,21,22 ils vont porter des satellites et des constrictions secondaires.

Mise en évidence des bandes chromosomiques :

- Bandes G: coloration au GIEMSA
- Bandes Q : coloration à la Quinacrine (profil identique au profil des bandes G)
- Bandes R (ou Reverse) : coloration au GIEMSA (les bandes R sont l'inverse des bandes Q)
- Bandes T : spécifiques de srégions télomériques
- Bandes C : spécifiques des régions centromériques

Note:

- L'ADN des bandes G et Q est riche en A-T et présente une réplication tardive.
- L'ADN des bandes R est riche en G-C et présente une réplication précoce.

Anomalies du caryotype:

Anomalies du degrés de ploïdie :

Polyploidies: triploïdies: 69 XXX ou 69 XXY (on a 23+23+23 paires).

Aneuploidie : nombre supérieur ou inférieur à 1 multiple de n

Exemple : les trisomies 21 (syndrome de Down) on a un 3^{ème} chromosome qui se rajoute à la 21^{ème} paire.

On a 47 XY +21

Anomalies de la structure des chromosomes :

Un seul chromosome : délétions, duplications (sur lui même), inversion (paracentrique ou péricentrique)

Deux chromosomes ou plus : insertion (au moins 2 chromosomes et 3 cassures), translocation (exemple chromosome de philadelphie).

Anomalies cytogénétiques et pathologies humaines :

Anomalies présentes dans les lignées germinales : congénitales :

Anomalies du nb de chromosomes, de la structure des chromosomes

Anomalies acquises : se sont des anomalies qui apparaissent dans les cellules somatiques (exemple dans les leucémies et les cancers).

Exemple : chromosome de philadelphie translocation réciproque entre 1 partie du bras q 22 et 1 partie du bras q du chromosome 9.

=>46 XY t(9,22) (q34,q11)

Intérêt pronostic du caryotype :

Caryotype fœtale:

Sur cellules embryonnaires (par amniocentèse à 16 et 20 SA)

Sur biopsie des villosités choriales (9 à 12 SA)

Sur sang de cordon (20 SA)

Indications:

- Femmes enceintes de plus de 35 ans.
- Femmes vectrices d'une maladie héréditaire liée à l'X
- Femme enceinte dont le mari est porteur d'un remaniement chromosomique
- Couple ayant déjà un enfant avec une aberration chromosomique
- Découverte d'une malformation à l'échographie

Caryotype post-natal:

En cas de retard de croissance, ambiguité sexuelle, anomalie de développement pubertaire et recherche d'anomalies chromosomiques acquises.